Machine Learning and Probabilistic Models of Vision
نویسندگان
چکیده
This paper draws connections between Probabilistic Methods and Machine Learning Approaches. In particular, we show that many Support Vector Machine criteria – binary, multi-class, and latent – can be obtained as upper bound approximations to standard probabilistic formulations. The advantage of these ’Machine Learning bounds’ is that it greatly simplifies the computation and, possibly, may yield greater robustness. These connections enable us to take complex models formulated in terms of probabilistic distribution defined over graph structure and approximate/bound them by machine learning techniques. We illustrate this with examples from the literature which are applied to a range of vision problems — including image labeling, object detection and parsing, and motion estimation – and which achieve state of the art results.
منابع مشابه
A Hybrid Optimization Algorithm for Learning Deep Models
Deep learning is one of the subsets of machine learning that is widely used in Artificial Intelligence (AI) field such as natural language processing and machine vision. The learning algorithms require optimization in multiple aspects. Generally, model-based inferences need to solve an optimized problem. In deep learning, the most important problem that can be solved by optimization is neural n...
متن کاملSimilarity measurement for describe user images in social media
Online social networks like Instagram are places for communication. Also, these media produce rich metadata which are useful for further analysis in many fields including health and cognitive science. Many researchers are using these metadata like hashtags, images, etc. to detect patterns of user activities. However, there are several serious ambiguities like how much reliable are these informa...
متن کاملIntroduction to Probabilistic Graphical Models
Over the last decades, probabilistic graphical models have become the method of choice for representing uncertainty in machine learning. They are used in many research areas such as computer vision, speech processing, time-series and sequential data modelling, cognitive science, bioinformatics, probabilistic robotics, signal processing, communications and error-correcting coding theory, and in ...
متن کاملThermal conductivity of Water-based nanofluids: Prediction and comparison of models using machine learning
Statistical methods, and especially machine learning, have been increasingly used in nanofluid modeling. This paper presents some of the interesting and applicable methods for thermal conductivity prediction and compares them with each other according to results and errors that are defined. The thermal conductivity of nanofluids increases with the volume fraction and temperature. Machine learni...
متن کاملProbabilistic models of vision and max-margin methods
It is attractive to formulate problems in computer vision and related fields in term of probabilistic estimation where the probability models are defined over graphs, such as grammars. The graphical structures, and the state variables defined over them, give a rich knowledge representation which can describe the complex structures of objects and images. The probability distributions defined ove...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2010